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An examination is made of the conjugate problem of the heat exchange between a 
flow and a blunt body in the vicinity of the stagnation point under steady and 
unsteady conditions. 

Several authors []-3] have theoretically investigated unsteady heat exchange in the 
vicinity of the stagnation point in fluid flow past a blunt body. The authors of [1], which 
presents a brief survey of their past studies, examined the case of unsteady heat exchange 
caused by a stepped change in heat flux and the temperature of the surface of the body. It 
was assumed that the body was enveloped by a subsonic steady laminar flow of an incompres- 
sible fluid with constant properties and that energy dissipation in the flow was negligibly 
small. The term in the energy equation accounting for convective heat transfer along the 
surface was omitted on the grounds that the derivative of temperature with respect to the 
coordinate along the surface was equal to zero at the stagnation point. A solution was 
found by means of the Laplace transform for small and large intervals of time in the form 
of series. As an example of the findings, it was shown that, after a stepped change in the 
wall temperature, heat flux exceeds the corresponding steady-state heat flux. The flux 
ratio decreases with time, approaching unity, and increases with an increase in the Prandtl 
number. The relaxation time relative to the heat flux increases in proportion to Pr I/4 and 
changes in inverse proportion to the velocity of the unperturbed flow. 

Using the assumptions noted above, the authors of [2] examined the problem of the tem- 
perature field in the boundary layer in the vicinity of the stagnation point with a change 
in the temperature of the incoming flow. With a stepped change in the temperature of the 
flow at a certain distance from the surface and a surface temperature of zero, investigators 
evaluated the relaxation time of the boundary layer for three values of the Pr number from 
0.5 to 2. It turned out that the relaxation time increased with an increase in the Pr number 
by a factor somewhat greater than unity. 

The authors of [3] investigated unsteady heat exchange after a stepped change in flow 
temperature for the cases of constant surface temperature and zero heat flux on the rear sur- 
face of a thin plate. In the latter case, the temperature was assumed constant through the 
plate thickness at each moment of time. It was shown that the heat-transfer coefficient 
decreases with time. An increase in the product of the specific heat and density of the 
plate material or the plate thickness and a reduction in the thermal conductivity are accom- 
panied by an increase in the transient heat-transfer coefficient ~t and the relaxation time. 
With an increase in the Pr number, both at and the relaxation time decrease. 

The authors of the above theoretical works, in studying unsteady heat exchange at an 
interface, assigned boundary conditions on bhis surface which necessarily limited the appli- 
cability of the results to the imposed conditions. Certain of the conclusions reached in the 
different studies are mutually inconsistent. One of two variants examined in [3] entailed an 
approximate accounting of the wall-heating process, which made it possible to investigate the 
dependence of the heat-transfer characteristics on the properties and dimensions of the body. 

It is often the case that the surface temperature, which changes during the heat- 
exchange process, is commensurate with the temperature of the incoming flow. In this case, 
a mathematical model which considers the process of heat conduction in the body should de- 
scribe the processes actually occurring more accurately than the models examined above. 

The conjugate transient problem of heat transfer close to the stagnation point of a 
spherically blunted body in a steady flow may be described as follows with allowance for the 
assumptions made in [1-3] and noted above: the equations of: 
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where u, v are the velocity components along the axes x and y; T,, dimensional time; --(I/p). 
(3p/3x) = B2x; B, velocity gradient, and is related to the velocity ue by the relation Ue = 
Bx. For a sphere, B = 3U~/2R, x ~r close to the stagnation point. The parameters with the 
index b pertain to the body, while parameters with the index f pertain to the fluid. The 
index e denotes correspondence to the outer boundary of the boundary layer. The mathematical 
model is two-dimensional for the flow and one-dimensional for the body. The choice of such a 
model was dictated by the fact that the sensors normally used to study transient heat ex- 
change are metal rods insulated on their sides to ensure uniform transfer of heat to the 
rods. As shown by experimental and theoretical checks [4, 5], this condition is usually met. 

Using the dimensionless variables [6] 
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and the current function ~ = (BM) X/2x2f(~), satisfying the continuity equation, the system of 
equations may be reduced to dimensionless form. We obtain the following equations: 
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Fig. I. Dependence of the complex Nut/RC~e on di- 
mensionless time (Pr = 5, kcp = 0.9): I) k X = I; 
2) 10; 3) 100; 4) 500; 5) 800; 6) 1000. 

Fig. 2. Comparison of the complex Nu/Rcr~e under 
steady (I, 4) and unsteady (2, 3) conditions of 
heat exchange: I, 2) Pr = 0.7; 3, 4) 7; I) kx = 
lOa-104; 2) k Z lOS- l .5  104 = �9 , k c p  = 2 " l O S ;  3 )  k x = 
103 , kc 9 = 0 . 9 ;  4) kx = lOa-lO 4. 

f (o)  = f'  (o)  = o ,  f '  (n~) = 1. ( ~ 8 )  

In the above formulation, the hydrodynamic part of the problem is independent of the 
thermal part. The solution to equation (II) with boundary conditions (18) was presented in 
[7]. It can be approximated with an error no greater than 5% by the relations: 

f = d , 4 7 n  ~,8 at ~ 1.4,  ( 1 9 )  

f = ~ - - 0 , 5 3  at ~ > 1 , 4 .  (20) 

The solution to the problem (12)-(17) is the temperature fields in the body and the flow, 
which can be used to calculate the value of the transient criterion Nut. The value of Nut 
for a spherical blunting is found from the expression 

Nu/V~R-~ = ] / 3 ( 0 0  f 10~)n=0 [ 1/(1 - -  On=0)l, ( 21 ) 

I t  f o l l o w s  from sys t em ( 1 2 ) - ( 1 3 )  w i t h  bounda ry  c o n d i t i o n s  (14 ) - (17 )  and f rom Eq. (21) 
that 

Nut/V~-~= ~(Pr, kv, kcp, Sh), ; (22) 

where kx = Xb/Xf; kcp = (cp)b/(cp)f; Sh = U~T*/D. The Sh number is related to dimensionless 
time T by the relation T = 3Sh/Pr. Calculations were performed on an ES-I022 computer for 
values of the parameters Pr = 2-7, k~ = ]-I0 a, kcp = 0.3 and 0.6; and Pr = 0.7, k X = 10-1.5. 
104 , kc o = 2.10~-6.103. 

It was found as a result of the calculations that the complex Zt = Nut/RC~e increases 
relatively rapidly in the initial~period of time, then slowing decreases (Fig. i). The 
time corresponding to the maximum Z t lies within the range 0.18 -- T ~ 1.5, depending on the 
Pr number, kx, and -- to a lesser degree -- on kcp. The maximum shifts in the direction of 
higher values of time with an increase in k~ and a decrease in the Pr number. Thus, given 
constant external parameters of the flow, after a stepped change in its temperature on the 
outer boundary of the boundary layer, the heat-transfer coefficient changes with time. The 
increase in a t in the initial period is due to through heating of the boundary layer, while 
the reduction in a t after it reaches its maximum value is due to the effect of the wall on 
a t . This effect is connected with the removal of heat inside the body. The value of at in- 
creases with a relative increase in the thermal conductivity of the wall (with an increase 
in kx) , a fact connected with the more intensive heat removal in this case. Meanwhile, the 
heat-transfer coefficient ceases to be dependent on the parameter kx when the latter increases 
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above 800-1000. The processes in the boundary layer become limiting in this case with re- 
spect to the mechanism of heat transfer. After through heating of the boundary layer, this 
limiting case most closely resembles the case of steady-state heat exchange. The effect of 
the parameter kcp on the heat-transfer coefficient depends on the values of the other param- 
eters, but is nonetheless less significant than the effect of k%. For example, at Pr = 0.7, 
a change in kcp from 2.103 to 6"10 ~ does not noticeably change the dependence of Zt on T. 
The dependence of transient heat transfer on the Re number, as would follow from Eq. (22), 
is the same for the given mathematical model of the process as it is for the steady-state 
case. 

Omitting from system (I)-(4) the terms including time, we obtain a formulation of the 
conjugate steady-state problem corresponding to the unsteady case examined above. We used 
the method of counter trial runs [8] to solve the steady-state problem numerically on a 
"Minsk-32" computer. The complex Nust/Rf~-e is determined by the parameters k% and Pr, i.e., 
as in the transient case, the complex is a function of the properties of the fluid and the 
body. In the steady-state case, Z is not dependent on kcp. 

Calculations performed within the range of k% ]--]0 4 and Pr 0.01-100 showed that several 
ranges of change in the parameters may be distinguished, each range being characterized by 
its own law of change in Nu/Rf~ee in relation to Pr and k%. In the first range, (k%------- ]0-]03 , 
Pr ~]0-1), Zst is independent of the Pr number. The value of Zst becomes nearly indepen- 
dent of k% as well when the latter rises above 500-1000. Within the indicated range, Zst is 
determined by the expression 

Zst = 1.25 [1 - -  exp ( - -  0.772 - -  0.0255 k~)]. (23)  

The second range covers values of k k from I0 to 103 and values of Pr from 10 -I to 102 . The 
dependence of Zst on k% and Pr within this range is satisfactorily described by expressions 
of the type 

Zst = a [lg ( 10 z Pr)]b + c, (24)  

where the quantity c is equal to the corresponding value of Eat in the first range (23)~ 
The coefficients g and b are equal to the following for k% ~20: 

a = 0.151 + 0,1 {1 - -  exp [ - -  2,25 (lg k~ - -  1,3)]}, (25)  

b = 2 -+- 0,72 {1 - -  exp [ - -  1,93 (lg k~ - -  t,3)]}. (26)  

At k~ greater than 500-1000, Zst is independent of this quantity within this range also. 
More precisely, the boundary of the region in which Zst is independent of k x in the range 

' Pr = 0.01-I00 is determined by the expression 

Z b d =  5 . 2 1 g k ~ - - 1 2 .  (27)  

The c h a n g e  i n  Z i n  t h e  t h i r d  r e g i o n  (k x = 1 - I 0 ,  P r  = 0 . 0 1 - 1 0 0 )  i s  a p p r o x i m a t e d  b y  t h e  e x p r e s -  
sions 

~r P r ~ 0 . 0 1 - - 0 . 5  Zs t= l ,621gk~- -O,85 ,  (28)  

~ r  Pr  ~ 0 , 5 - -  100 Zst = (1 ,71Pr~ (29)  

The a p p r o x i m a t i o n  e r r o r  o f  Eq.  (23)  i s  6 .3%;  (24)  ~ 8%; ( 2 8 ) ,  (29)  -- 3 % .  

The n o n c o n j u g a t e  s t e a d y - s t a t e  h e a t - t r a n s f e r  p r o b l e m  i n  t h e  s t a g n a t i o n  p o i n t  r e g i o n  was 
solved in [6] by Sibulkin. The assumption on the equality of the surface temperature to 
zero made in [6] is closest to the case of large values of kx for the problem as formulated 
in the present work. The value of Nu/frRe = 1.32 obtained in [6] for the case Pr = ] agrees 
satisfactorily with the value of this quantity found from solving the conjugate problem at 
k% > 100. 

Comparison of the solutions obtained for the conjugate problem for steady-state and 
transient cases showed that, given constant values of the parameters of the unperturbed flow 
equal to parameters in the steady-state case, in the initial period of the transient heat 
exchange process the heat-transfer coefficient may differ several times from its steady-state 
value (Fig. 2). After through heating of the boundary layer, the coefficients are the same 
in each case. 

The following formula can be used to evaluate the time over which the transient heat- 
transfer coefficient reaches its maximum value (see Fig. l) at values of Pr = 2-7, 
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kcp = 0.3-0.9, k k = 1-103: 

~max = (0.26 + 0.07 kc~ [exp (-- 0,16 Pr)] lgkx -6 0.185, (30) 

The approximation error of this formula is I-2% at Pr = 7 and 10% at Pr = 2. 

The value of the maximum complex (Nut/C~e)max is determined with an error of 5% by the 
expression 

(Nut/V'-~)max : (0-15 Pr -6 1.35) {1 - -  exp [-- (0.0121 -6 0,00517 kcp-- 0.00033 Pr) k~ -6 0.36 - -  0.01 Pr]}. (31 ) 

Introduction of the relative quantities Nut/(Nut)max and r = T/(rmax -- 0.05/Tmax) made 
it possible to ~ombine the theoretical relations into a single relation which takes the fol- 
lowing form at T__~--0.08-1: 

Nu#(Nut)ma x = 1 -- exp (0.35 --5.46 ~.  (32) 

Equations (30)-(32) describe the transient heat-transfer coefficient in the interaction of a 
water flow with blunt bodies made of metals and insulators in the stagnation-point re~gion for 
the case of a stepped change in the temperature of the flow beyond the limits of the boundary 
layer, with the initial flow temperature being equal to the temperature of the body. 

The difference for air (Fig. 2) is that here the maximum of the curve of Nut/RC~e = f(T) 
is not as pronounced as for water. The character of the change in at in the air flow on the 
increasing section is also described by a relation of the type (32) if we take for the value 
of Tma x a value corresponding to, say, 0.98(Nut/R/~e)ma x. 

In conformity with the notation used in the present work, the dimensional time T* = 
PrRT/3U~. If we take R = 10 -2 m -- which corresponds to the size of the bodies used in ex- 
periments -- then for air at U~ = 103 m/sec the time of the change in the heat-transfer co- 
efficient to a maximum value of the same order as the heating time of the boundary layer is 
~10 -6 sec. For water at U~ = I m/sec, this time is 10 -2 sec. Thus, in the case of t~e flow 
of a viscous fluid at low velocities, the change in the heat-transfer coefficient resulting 
from a stepped change in the temperature of the flow outside the boundary layer may be ob- 
served by experimental methods described in the literature. In the case of an air flow -- 
including at high temperatures -- the change in s t resulting from the same stepped change in 
flow temperature beyond the boundary layer may be significant in impulsive processes. 
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